Coaction functors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries of a Generic Coaction

If B is C∗-algebra of dimension 4 ≤ n < ∞ then the finite dimensional irreducible representations of the compact quantum automorphism group of B, say Gaut(B̂), have the same fusion rules as the ones of SO(3). As consequences, we get (1) a structure result for Gaut(B̂) in the case where B is a matrix algebra (2) if n ≥ 5 then the dual Ĝaut(B̂) is not amenable (3) if n ≥ 4 then the fixed point subfa...

متن کامل

The Planar Algebra of a Coaction

We study actions of “compact quantum groups” on “finite quantum spaces”. According to Woronowicz and to general C-algebra philosophy these correspond to certain coactions v : A → A ⊗ H . Here A is a finite dimensional C-algebra, and H is a certain special type of Hopf ∗-algebra. If v preserves a positive linear form φ : A → C, a version of Jones’ “basic construction” applies. This produces a ce...

متن کامل

Copower functors

We give a common generalization of two earlier constructions in [2], that yielded coalgebraic type functors for weighted, resp. fuzzy transition systems. Transition labels for these systems were drawn from a commutative monoid M or a complete semilattice L, with the transition structure interacting with the algebraic structure on the labels. Here, we show that those earlier signature functors a...

متن کامل

Modular Functors

We prove in this paper that the genus zero data of a modular functor determines the modular functor. We do this by establishing that the S-matrix in genus onewith one point labeled arbitrarily can be expressed in terms of the genus zero information and we give an explicit formula. We do not assume the modular functor in question has duality or is unitary, in order to establish this. CONTENTS

متن کامل

Webster’s Functors

We start with a warm-up: we explain Nakajima’s construction of the geometric sl2-action on ⊕ v Hmid(T ∗Gr(v, w)). 1.1. Warm-up: Nakajima’s geometric action. The lagrangian subvariety φ−1(0) ⊂ M(v) is easily seen to be the zero section Gr(v, w) ⊂ T ∗Gr(v, w). Indeed, consider the action of C× on M(v) induced from the C×-action on T ∗R by fiberwise dilations. Under the identification ofM(v) with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2016

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2016.284.147